Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38573520

RESUMO

Visual systems adapt to different light environments through several avenues including optical changes to the eye and neurological changes in how light signals are processed and interpreted. Spectral sensitivity can evolve via changes to visual pigments housed in the retinal photoreceptors through gene duplication and loss, differential and coexpression, and sequence evolution. Frogs provide an excellent, yet understudied, system for visual evolution research due to their diversity of ecologies (including biphasic aquatic-terrestrial life cycles) that we hypothesize imposed different selective pressures leading to adaptive evolution of the visual system, notably the opsins that encode the protein component of the visual pigments responsible for the first step in visual perception. Here, we analyze the diversity and evolution of visual opsin genes from 93 new eye transcriptomes plus published data for a combined dataset spanning 122 frog species and 34 families. We find that most species express the four visual opsins previously identified in frogs but show evidence for gene loss in two lineages. Further, we present evidence of positive selection in three opsins and shifts in selective pressures associated with differences in habitat and life history, but not activity pattern. We identify substantial novel variation in the visual opsins and, using microspectrophotometry, find highly variable spectral sensitivities, expanding known ranges for all frog visual pigments. Mutations at spectral-tuning sites only partially account for this variation, suggesting that frogs have used tuning pathways that are unique among vertebrates. These results support the hypothesis of adaptive evolution in photoreceptor physiology across the frog tree of life in response to varying environmental and ecological factors and further our growing understanding of vertebrate visual evolution.


Assuntos
Opsinas , Pigmentos da Retina , Humanos , Animais , Opsinas/genética , Anuros/genética , Duplicação Gênica , Microespectrofotometria
2.
Mol Phylogenet Evol ; 188: 107907, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37633542

RESUMO

Large-scale, time-calibrated phylogenies from supermatrix studies have become crucial for evolutionary and ecological studies in many groups of organisms. However, in frogs (anuran amphibians), there is a serious problem with existing supermatrix estimates. Specifically, these trees are based on a limited number of loci (15 or fewer), and the higher-level relationships estimated are discordant with recent phylogenomic estimates based on much larger numbers of loci. Here, we attempted to rectify this problem by generating an expanded supermatrix and combining this with data from phylogenomic studies. To assist in aligning ribosomal sequences for this supermatrix, we developed a new program (TaxonomyAlign) to help perform taxonomy-guided alignments. The new combined matrix contained 5,242 anuran species with data from 307 markers, but with 95% missing data overall. This dataset represented a 71% increase in species sampled relative to the previous largest supermatrix analysis of anurans (adding 2,175 species). Maximum-likelihood analyses generated a tree in which higher-level relationships (and estimated clade ages) were generally concordant with those from phylogenomic analyses but were more discordant with the previous largest supermatrix analysis. We found few obvious problems arising from the extensive missing data in most species. We also generated a set of 100 time-calibrated trees for use in comparative analyses. Overall, we provide an improved estimate of anuran phylogeny based on the largest number of combined taxa and markers to date. More broadly, we demonstrate the potential to combine phylogenomic and supermatrix analyses in other groups of organisms.


Assuntos
Anuros , Evolução Biológica , Animais , Filogenia , Anuros/genética , Ribossomos
3.
Proc Biol Sci ; 290(2000): 20230865, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37312553

RESUMO

In the era of human-driven climate change, understanding whether behavioural buffering of temperature change is linked with organismal fitness is essential. According to the 'cost-benefit' model of thermoregulation, animals that live in environments with high frequencies of favourable thermal microclimates should incur lower thermoregulatory costs, thermoregulate more efficiently and shunt the associated savings in time and energy towards other vital tasks such as feeding, territory defence and mate acquisition, increasing fitness. Here, we explore how thermal landscapes at the scale of individual territories, physiological performance and behaviour interact and shape fitness in the southern rock agama lizard (Agama atra). We integrated laboratory assays of whole organism performance with behavioural observations in the field, fine-scale estimates of environmental temperature, and paternity assignment of offspring to test whether fitness is predicted by territory thermal quality (i.e. the number of hours that operative temperatures in a territory fall within an individual's performance breadth). Male lizards that occupied territories of low thermal quality spent more time behaviourally compensating for sub-optimal temperatures and displayed less. Further, display rate was positively associated with lizard fitness, suggesting that there is an opportunity cost to engaging in thermoregulatory behaviour that will change as climate change progresses.


Assuntos
Técnicas de Observação do Comportamento , Lagartos , Animais , Humanos , Masculino , Fenótipo , Regulação da Temperatura Corporal , Mudança Climática , Renda
4.
Evolution ; 77(9): 1930-1944, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37288542

RESUMO

Evolutionary shifts in chromosome compositions (karyotypes) are major drivers of lineage and genomic diversification. Fusion of ancestral chromosomes is one hypothesized mechanism for the evolutionary reduction of the total chromosome number, a frequently implied karyotypic shift. Empirical tests of this hypothesis require model systems with variable karyotypes, known chromosome features, and a robust phylogeny. Here we used chameleons, diverse lizards with exceptionally variable karyotypes ($2n=20\text{-}62$), to test whether chromosomal fusions explain the repeated evolution of karyotypes with fewer chromosomes than ancestral karyotypes. Using a multidisciplinary approach including cytogenetic analyses and phylogenetic comparative methods, we found that a model of constant loss through time best explained chromosome evolution across the chameleon phylogeny. Next, we tested whether fusions of microchromosomes into macrochromosomes explained these evolutionary losses using generalized linear models. Multiple comparisons supported microchromosome fusions as the predominant agent of evolutionary loss. We further compared our results to various natural history traits and found no correlations. As such, we infer that the tendency of microchromosomes to fuse was a quality of the ancestral chameleon genome and that the genomic predisposition of ancestors is a more substantive predictor of chromosome change than the ecological, physiological, and biogeographical factors involved in their diversification.


Assuntos
Evolução Molecular , Genoma , Cariótipo , Cariotipagem , Filogenia
5.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37140129

RESUMO

The data available for reconstructing molecular phylogenies have become wildly disparate. Phylogenomic studies can generate data for thousands of genetic markers for dozens of species, but for hundreds of other taxa, data may be available from only a few genes. Can these two types of data be integrated to combine the advantages of both, addressing the relationships of hundreds of species with thousands of genes? Here, we show that this is possible, using data from frogs. We generated a phylogenomic data set for 138 ingroup species and 3,784 nuclear markers (ultraconserved elements [UCEs]), including new UCE data from 70 species. We also assembled a supermatrix data set, including data from 97% of frog genera (441 total), with 1-307 genes per taxon. We then produced a combined phylogenomic-supermatrix data set (a "gigamatrix") containing 441 ingroup taxa and 4,091 markers but with 86% missing data overall. Likelihood analysis of the gigamatrix yielded a generally well-supported tree among families, largely consistent with trees from the phylogenomic data alone. All terminal taxa were placed in the expected families, even though 42.5% of these taxa each had >99.5% missing data and 70.2% had >90% missing data. Our results show that missing data need not be an impediment to successfully combining very large phylogenomic and supermatrix data sets, and they open the door to new studies that simultaneously maximize sampling of genes and taxa.


Assuntos
Anuros , Animais , Filogenia , Análise de Sequência de DNA , Anuros/genética , Probabilidade
6.
Proc Biol Sci ; 289(1987): 20220767, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382525

RESUMO

The shape and relative size of an ocular lens affect the focal length of the eye, with consequences for visual acuity and sensitivity. Lenses are typically spherical in aquatic animals with camera-type eyes and axially flattened in terrestrial species to facilitate vision in optical media with different refractive indices. Frogs and toads (Amphibia: Anura) are ecologically diverse, with many species shifting from aquatic to terrestrial ecologies during metamorphosis. We quantified lens shape and relative size using 179 micro X-ray computed tomography scans of 126 biphasic anuran species and tested for correlations with life stage, environmental transitions, adult habits and adult activity patterns. Across broad phylogenetic diversity, tadpole lenses are more spherical than those of adults. Biphasic species with aquatic larvae and terrestrial adults typically undergo ontogenetic changes in lens shape, whereas species that remain aquatic as adults tend to retain more spherical lenses after metamorphosis. Further, adult lens shape is influenced by adult habit; notably, fossorial adults tend to retain spherical lenses following metamorphosis. Finally, lens size relative to eye size is smaller in aquatic and semiaquatic species than other adult ecologies. Our study demonstrates how ecology shapes visual systems, and the power of non-invasive imaging of museum specimens for studying sensory evolution.


Assuntos
Anuros , Bufonidae , Animais , Filogenia , Anuros/anatomia & histologia , Metamorfose Biológica , Ecologia , Larva
7.
Ecol Evol ; 12(11): e9537, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447598

RESUMO

In numerous clades, divergent sister species have largely non-overlapping geographic ranges. This pattern presumably arises because species diverged in allopatry or parapatry, prior to a subsequent contact. Here, we provide population-genomic evidence for the opposite scenario: previously sympatric ecotypes that have spatially separated into divergent monomorphic populations over large geographic scales (reverse sympatric scenario). We analyzed a North American salamander (Plethodon cinereus) with two color morphs that are broadly sympatric: striped (redback) and unstriped (leadback). Sympatric morphs can show considerable divergence in other traits, and many Plethodon species are fixed for a single morph. Long Island (New York) is unusual in having many pure redback and leadback populations that are spatially separated, with pure redback populations in the west and pure leadbacks in the east. Previous work showed that these pure-morph populations were genetically, morphologically, and ecologically divergent. Here, we performed a coalescent-based analysis of new data from 88,696 single-nucleotide polymorphisms to address the origins of these populations. This analysis strongly supports the monophyly of Long Island populations and their subsequent divergence into pure redback and pure leadback populations. Taken together, these results suggest that the formerly sympatric mainland morphs separated into parapatric populations on Long Island, reversing the conventional speciation scenario.

8.
BMC Biol ; 20(1): 138, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35761245

RESUMO

BACKGROUND: Differences in morphology, ecology, and behavior through ontogeny can result in opposing selective pressures at different life stages. Most animals, however, transition through two or more distinct phenotypic phases, which is hypothesized to allow each life stage to adapt more freely to its ecological niche. How this applies to sensory systems, and in particular how sensory systems adapt across life stages at the molecular level, is not well understood. Here, we used whole-eye transcriptomes to investigate differences in gene expression between tadpole and juvenile southern leopard frogs (Lithobates sphenocephalus), which rely on vision in aquatic and terrestrial light environments, respectively. Because visual physiology changes with light levels, we also tested the effect of light and dark exposure. RESULTS: We found 42% of genes were differentially expressed in the eyes of tadpoles versus juveniles and 5% for light/dark exposure. Analyses targeting a curated subset of visual genes revealed significant differential expression of genes that control aspects of visual function and development, including spectral sensitivity and lens composition. Finally, microspectrophotometry of photoreceptors confirmed shifts in spectral sensitivity predicted by the expression results, consistent with adaptation to distinct light environments. CONCLUSIONS: Overall, we identified extensive expression-level differences in the eyes of tadpoles and juveniles related to observed morphological and physiological changes through metamorphosis and corresponding adaptive shifts to improve vision in the distinct aquatic and terrestrial light environments these frogs inhabit during their life cycle. More broadly, these results suggest that decoupling of gene expression can mediate the opposing selection pressures experienced by organisms with complex life cycles that inhabit different environmental conditions throughout ontogeny.


Assuntos
Metamorfose Biológica , Transcriptoma , Animais , Anuros/fisiologia , Larva/genética , Estágios do Ciclo de Vida , Metamorfose Biológica/genética , Rana pipiens
9.
Glob Chang Biol ; 28(4): 1268-1286, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34874078

RESUMO

How will organisms cope when forced into warmer-than-preferred thermal environments? This is a key question facing our ability to monitor and manage biota as average annual temperatures increase, and is of particular concern for range-limited terrestrial species unable to track their preferred climatic envelope. Being ectothermic, desiccation prone, and often spatially restricted, island-inhabiting tropical amphibians exemplify this scenario. Pre-Anthropocene case studies of how insular amphibian populations responded to the enforced occupation of warmer-than-ancestral habitats may add a valuable, but currently lacking, perspective. We studied a population of frogs from the Seychelles endemic family Sooglossidae which, due to historic sea-level rise, have been forced to occupy a significantly warmer island (Praslin) than their ancestors and close living relatives. Evidence from thermal activity patterns, bioacoustics, body size distributions, and ancestral state estimations suggest that this population shifted its thermal niche in response to restricted opportunities for elevational dispersal. Relative to conspecifics, Praslin sooglossids also have divergent nuclear genotypes and call characters, a finding consistent with adaptation causing speciation in a novel thermal environment. Using an evolutionary perspective, our study reveals that some tropical amphibians have survived episodes of historic warming without the aid of dispersal and therefore may have the capacity to adapt to the currently warming climate. However, two otherwise co-distributed sooglossid species are absent from Praslin, and the deep evolutionary divergence between the frogs on Praslin and their closest extant relatives (~8 million years) may have allowed for gradual thermal adaptation and speciation. Thus, local extinction is still a likely outcome for tropical frogs experiencing warming climates in the absence of dispersal corridors to thermal refugia.


Assuntos
Anuros , Ecossistema , Aclimatação , Animais , Anuros/fisiologia , Evolução Biológica , Mudança Climática , Ilhas , Clima Tropical
10.
Wellcome Open Res ; 6: 286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35118201

RESUMO

We present a genome assembly from an individual female Rana temporaria (the common frog; Chordata; Amphibia; Anura; Ranidae). The genome sequence is 4.11 gigabases in span. The majority of the assembly is scaffolded into 13 chromosomal pseudomolecules. Gene annotation of this assembly by the NCBI Eukaryotic Genome Annotation Pipeline has identified 23,707 protein coding genes.

11.
Wellcome Open Res ; 6: 281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35028424

RESUMO

We present a genome assembly from an individual male Bufo bufo (the common toad; Chordata; Amphibia; Anura; Bufonidae). The genome sequence is 5.04 gigabases in span. The majority of the assembly (99.1%) is scaffolded into 11 chromosomal pseudomolecules. Gene annotation of this assembly by the NCBI Eukaryotic Genome Annotation Pipeline has identified 21,517 protein coding genes.

12.
PeerJ ; 8: e9934, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33062424

RESUMO

We describe two new species of salamanders of the genus Oedipina, subgenus Oedopinola, from two localities on the northwestern foothills of Ecuador, at elevations between 921 and 1,067 m. These are the southernmost members of the genus. We examined different museum collections and we found just three specimens of Oedipina from Ecuador, obtained throughout the history of herpetological collections in the country. We identify two of the three specimens as new species, but refrain from assigning a specific identity to the third, pending further study. Oedipina villamizariorum sp. n. is a medium-sized member of the genus, with a narrow, relatively pointed head and blunt snout; dorsolaterally oriented eyes, moderate in size; and digits that are moderately long and having pointed tips. Oedipina ecuatoriana sp. n., somewhat larger, has a narrow head and broadly rounded snout; this new species differs from all known Oedipina by the distinctive presence of paired prefrontal bones and a reduced phalangeal formula: 0-0-1-0; 0-1-2-1-1. We provide detailed descriptions of the osteology of both new species. Finally, we present a phylogenetic hypothesis for the genus, including one of the two new species, based on partial sequences of mitochondrial DNA.

13.
Proc Biol Sci ; 287(1935): 20201393, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32962540

RESUMO

Frogs and toads (Amphibia: Anura) display diverse ecologies and behaviours, which are often correlated with visual capacity in other vertebrates. Additionally, anurans exhibit a broad range of relative eye sizes, which have not previously been linked to ecological factors in this group. We measured relative investment in eye size and corneal size for 220 species of anurans representing all 55 currently recognized families and tested whether they were correlated with six natural history traits hypothesized to be associated with the evolution of eye size. Anuran eye size was significantly correlated with habitat, with notable decreases in eye investment among fossorial, subfossorial and aquatic species. Relative eye size was also associated with mating habitat and activity pattern. Compared to other vertebrates, anurans have relatively large eyes for their body size, indicating that vision is probably of high importance. Our study reveals the role that ecology and behaviour may have played in the evolution of anuran visual systems and highlights the usefulness of museum specimens, and importance of broad taxonomic sampling, for interpreting macroecological patterns.


Assuntos
Anuros , Tamanho Corporal , Bufonidae , Ecossistema , Olho/anatomia & histologia , Animais , Evolução Biológica , Cruzamento , Fenótipo , Filogenia , Reprodução , Visão Ocular
14.
Mol Ecol ; 29(18): 3400-3402, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32743830

RESUMO

Discordance between the mitochondrial and nuclear genomes is a prevalent phenomenon in nature, in which the underlying processes responsible are considered to be important in shaping genetic variation in natural populations. Among the evolutionary processes that best explain such genomic mismatches incomplete lineage sorting and introgression are commonly identified, however, many studies are unable to distinguish between these hypotheses, which has become a major challenge in the field. In this issue of Molecular Ecology, Firneno et al. (2020) present an elegant exploration of mitochondrial-nuclear discordance in Mesoamerican toads. Integrating genome-scale and spatial data to test between these hypotheses within an empirical model testing framework, they find strong support that incomplete lineage sorting explains the observed discordance. Their work, along with many previous articles in Molecular Ecology, highlights the commonality of mito-nuclear discordance among species despite the expectations of tightly concerted mitochondrial and nuclear genome evolution. It is increasingly clear that the nuclear genomes of many species are (at least for short periods of evolutionary time) functionally compatible with multiple, divergent mitochondrial haplotypes. As such, we suggest future research not only seeks to understand the processes causing spatial mito-nuclear discordance (e.g. incomplete lineage sorting, introgression), but also explores those that maintain discordance through time and space (e.g. relaxed selection on mito-nuclear interactions, heterozygosity, population demographics). We also discuss the vital role that taxonomy plays in interpreting patterns of mito-nuclear discordance when data-consistent yet differing taxonomies are used, such as treating allopatrically distributed taxa as multiple isolated populations versus multiple micro-endemic species.


Assuntos
DNA Mitocondrial , Verrugas , Núcleo Celular/genética , DNA Mitocondrial/genética , Haplótipos , Humanos , Motivação
15.
Nat Ecol Evol ; 4(8): 1129-1140, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32572219

RESUMO

Metamorphosis is widespread across the animal kingdom and induces fundamental changes in the morphology, habitat and resources used by an organism during its lifetime. Metamorphic species are likely to experience more dynamic selective pressures through ontogeny compared with species with single-phase life cycles, which may drive divergent evolutionary dynamics. Here, we reconstruct the cranial evolution of the salamander using geometric morphometric data from 148 species spanning the order's full phylogenetic, developmental and ecological diversity. We demonstrate that life cycle influences cranial shape diversity and rate of evolution. Shifts in the rate of cranial evolution are consistently associated with transitions from biphasic to either direct-developing or paedomorphic life cycle strategies. Direct-developers exhibit the slowest rates of evolution and the lowest disparity, and paedomorphic species the highest. Species undergoing complete metamorphosis (biphasic and direct-developing) exhibit greater cranial modularity (evolutionary independence among regions) than do paedomorphic species, which undergo differential metamorphosis. Biphasic and direct-developing species also display elevated disparity relative to the evolutionary rate for bones associated with feeding, whereas this is not the case for paedomorphic species. Metamorphosis has profoundly influenced salamander cranial evolution, requiring greater autonomy of cranial elements and facilitating the rapid evolution of regions that are remodelled through ontogeny. Rather than compounding functional constraints on variation, metamorphosis seems to have promoted the morphological evolution of salamanders over 180 million years, which may explain the ubiquity of this complex life cycle strategy across disparate organisms.


Assuntos
Metamorfose Biológica , Urodelos , Animais , Estágios do Ciclo de Vida , Filogenia , Crânio , Urodelos/genética
16.
Mol Phylogenet Evol ; 146: 106771, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32087330

RESUMO

Narrow-mouthed frogs (Anura: Microhylidae) are globally distributed and molecular data suggest the rapid evolution of multiple subfamilies shortly after their origin. Despite recent progress, several subfamilial relationships remain unexplored using phylogenomic data. We analysed 1,796 nuclear ultraconserved elements, a total matrix of 400,664 nucleotides, from representatives of most microhylid subfamilies. Summary method species-tree and maximum likelihood analyses unambiguously supported Hoplophryninae as the earliest diverging microhylid and confirm Chaperininae as a junior synonym of Microhylinae. Given the emerging consensus that subfamilies from mainland Africa diverged early, microhylids have likely occupied the continent for more than 66 million years.


Assuntos
Anuros/classificação , África , Animais , Anuros/genética , Sequência de Bases , Núcleo Celular/genética , Sequência Conservada , Marcadores Genéticos , Filogenia
17.
PLoS One ; 14(9): e0220892, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31509539

RESUMO

A comprehensive, accurate, and revisable alpha taxonomy is crucial for biodiversity studies, but is challenging when data from reference specimens are difficult to collect or observe. However, recent technological advances can overcome some of these challenges. To illustrate this, we used modern approaches to tackle a centuries-old taxonomic enigma presented by Fraser's Clawed Frog, Xenopus fraseri, including whether X. fraseri is different from other species, and if so, where it is situated geographically and phylogenetically. To facilitate these inferences, we used high-resolution techniques to examine morphological variation, and we generated and analyzed complete mitochondrial genome sequences from all Xenopus species, including >150-year-old type specimens. Our results demonstrate that X. fraseri is indeed distinct from other species, firmly place this species within a phylogenetic context, and identify its minimal geographic distribution in northern Ghana and northern Cameroon. These data also permit novel phylogenetic resolution into this intensively studied and biomedically important group. Xenopus fraseri was formerly thought to be a rainforest endemic placed alongside species in the amieti species group; in fact this species occurs in arid habitat on the borderlands of the Sahel, and is the smallest member of the muelleri species group. This study illustrates that the taxonomic enigma of Fraser's frog was a combined consequence of sparse collection records, interspecies conservation and intraspecific polymorphism in external anatomy, and type specimens with unusual morphology.


Assuntos
Biodiversidade , Xenopus/classificação , Animais , Sequência Conservada , Código de Barras de DNA Taxonômico , Evolução Molecular , Genoma Mitocondrial , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Modelos Anatômicos , Filogenia , Microtomografia por Raio-X , Xenopus/anatomia & histologia
18.
Mol Ecol ; 28(10): 2610-2624, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30843297

RESUMO

Around the world, many species are confined to "Sky Islands," with different populations in isolated patches of montane habitat. How does this pattern arise? One scenario is that montane species were widespread in lowlands when climates were cooler, and were isolated by local extinction caused by warming conditions. This scenario implies that many montane species may be highly susceptible to anthropogenic warming. Here, we test this scenario in a montane lizard (Sceloporus jarrovii) from the Madrean Sky Islands of southeastern Arizona. We combined data from field surveys, climate, population genomics, and physiology. Overall, our results support the hypothesis that this species' current distribution is explained by local extinction caused by past climate change. However, our results for this species differ from simple expectations in several ways: (a) their absence at lower elevations is related to warm winter temperatures, not hot summer temperatures; (b) they appear to exclude a low-elevation congener from higher elevations, not the converse; (c) they are apparently absent from many climatically suitable but low mountain ranges, seemingly "pushed off the top" by climates even warmer than those today; (d) despite the potential for dispersal among ranges during recent glacial periods (~18,000 years ago), populations in different ranges diverged ~4.5-0.5 million years ago and remained largely distinct; and (e) body temperatures are inversely related to climatic temperatures among sites. These results may have implications for many other Sky Island systems. More broadly, we suggest that Sky Island species may be relevant for predicting responses to future warming.


Assuntos
Mudança Climática , DNA Mitocondrial/genética , Lagartos/genética , Filogeografia , Animais , Arizona , Ecossistema , Variação Genética/genética , Ilhas , Filogenia
19.
Pest Manag Sci ; 75(11): 3102-3112, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30924276

RESUMO

BACKGROUND: Aphytis melinus DeBach (Hymenoptera: Aphelinidae) is a highly effective biocontrol agent of the California red scale Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae). It is commercially reared and used for augmentative releases within integrated pest management programs. However, mass rearing of biocontrol agents can result in population bottlenecks and high levels of inbreeding and/or adaptation to the factitious rearing conditions. Although these factors can all negatively impact field performance of biocontrol agents, few empirical studies have examined the genetic consequences of mass rearing. We used double-digest RAD sequencing (ddRADseq) to investigate the effect of traditional mass rearing on genetic variation among insectary colonies of A. melinus relative to wild populations in native (Pakistan) and introduced (California) ranges. RESULTS: Analyses of up to 9700 single nucleotide polymorphisms (SNPs) revealed that insectary populations had less genomic variation than introduced populations. This was evidenced by fewer private alleles, reduced heterozygosity, and greater missing data in the insectary populations. Further, California insectaries formed a distinct genomic cluster relative to the other samples, a surprising result given that the insectary colonies were putatively established at different times and from different source populations. These differences were evident across most data sets also after we filtered out contaminant DNA from the most common host species (Aspidiotus nerii Bouché and A. aurantii). CONCLUSION: We hypothesize that this pattern would only result if: (i) directional selection for 'captive' phenotypes produces convergent patterns of genomic variation across insectaries; or (ii) the California insectary colonies were all founded from a unifying source population and/or that the insectaries regularly exchange 'genetic' stocks. We show that RADseq is an effective method to investigate the effects of mass rearing on genetics of biocontrol agents. © 2019 Society of Chemical Industry.


Assuntos
Estudo de Associação Genômica Ampla , Hemípteros/parasitologia , Controle de Insetos , Controle Biológico de Vetores , Polimorfismo de Nucleotídeo Único , Vespas/genética , Animais , California , Paquistão
20.
Mol Ecol Resour ; 19(4): 818-837, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30506631

RESUMO

Introgression is now commonly reported in studies across the Tree of Life, aided by recent advancements in data collection and analysis. Nevertheless, researchers working with nonmodel species lacking reference genomes may be stymied by a mismatch between available resources and methodological demands. In this study, we demonstrate a fast and simple approach for inferring introgression using RADseq data, and apply it to a case study involving spiny lizards (Sceloporus) from northeastern México. First, we find evidence for recurrent mtDNA introgression between the two focal species based on patterns of mito-nuclear discordance. We then test for nuclear introgression by exhaustively applying the "five-taxon" D-statistic (DFOIL ) to all relevant individuals sampled for RADseq data. In our case, this exhaustive approach (dubbed "ExDFOIL ") entails testing up to ~250,000 unique four-taxon combinations of individuals across species. To facilitate use of this ExDFOIL approach, we provide scripts for many relevant tasks, including the selection of appropriate four-taxon combinations, execution of DFOIL tests in parallel and visualization of introgression results in phylogenetic and geographic space. Using ExDFOIL , we find evidence for ancient introgression between the focal species. Furthermore, we reveal geographic variation in patterns of introgression that is consistent with patterns of mito-nuclear discordance and with recurrent introgression. Overall, our study demonstrates that the combination of DFOIL and RADseq data can effectively detect introgression under a variety of sampling conditions (for individuals, populations and loci). Importantly, we also find evidence that batch-specific error and linkage in RADseq data may mislead inferences of introgression under certain conditions.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Fluxo Gênico , Lagartos/genética , Análise de Sequência de DNA/métodos , Animais , Bioestatística/métodos , DNA Mitocondrial/genética , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...